Newer Technology for Screening of Obstructive Sleep Apnea

M K Sen
Consultant & Professor of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjang Hospital, New Delhi-110029.

Introduction

A fully supervised, in-laboratory sleep study is considered to be the reference-standard for diagnosis of obstructive sleep apnea (OSA) and has, since a long time, been utilised as a benchmark against which all other diagnostic modalities have been compared. An overnight polysomnography (PSG) monitors many body functions during sleep and requires the patient to be hooked up to several diagnostic probes, often numbering more than sixteen, while being observed overnight in the setting of a sleep laboratory. Undoubtedly, it is all pervasive but has been the subject of criticism.1 It requires overnight stay in the hospital, is inconvenient to a large extent, expensive and also requires the presence of a laboratory technologist to be in constant attendance. Most sleep laboratories running at full capacity, an in-laboratory sleep study also has long waiting list. Although several types of procedures have been enlisted (Table-1) as substitutes for such a test, none has been accredited with similar capabilities. Hence a search for a reliable diagnostic test for OSA has been a long cherished dream and a hot pursuit for several research workers in sleep medicine and allied subspecialties. This article shall focus on some of the newer technological developments in the diagnosis of OSA that have recently been the subject matter of discussion. If used judiciously with appropriate calibration and proper decision support, they can be potentially exploited for cost-effective, large scale collection of data and OSA screening purposes.

<table>
<thead>
<tr>
<th>Table 1: Types of procedures utilised for diagnosis of OSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of procedure</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>I Laboratory-based</td>
</tr>
<tr>
<td>II Portable</td>
</tr>
<tr>
<td>III Portable</td>
</tr>
<tr>
<td>IV Portable</td>
</tr>
</tbody>
</table>

EEG: electro-encephalogram ECG: electro-cardiogram EMG: electro-myogram, HR: heart rate, EOG: electro-oculogram, SpO₂: oxygen saturation

Questionnaire Based Screening for OSA

Conventionally the Epworth Sleepiness Scale (ESS) has been used to identify patients with potential sleep disordered breathing (SDB).

A 4-variable screening tool was recently proposed to identify patients with SDB. It utilises gender, blood pressure, body mass index and snoring³.

It has been compared to STOP, STOP-Bang and ESS questionnaire⁴. The STOP-BANG questionnaire has highest specificity to predict moderate-to-severe (87%) and severe (70.4%) SDB, while the 4-variable screening tool had higher specificity to predict moderate-to-severe and severe SDB (93.2% for both)⁴. Besides Berlin questionnaire, the various other questionnaires like STOP (snoring, tiredness, observed apnoeas, blood pressure),
STOP-BANG (STOP + BMI), age, neck, gender) have been traditionally used for OSA screening\(^5,6,7\). Other questionnaires like Multivariate Apnea Prediction Index and Pittsburgh Sleep Quality Index has a wide range of sensitivity and specificity depending on the Apnoea Hypopnoea Index (AHI) cut off level\(^2\).

Signals utilised in sleep analysis

Rapid screening of various body signals has now been facilitated by the development of modern signal processing tools and cheaper processing hardware, improved video-processing software and hardware, data fusion and machine-learning techniques. Techniques of home sleep testing have been studied extensively. These have been compared with the reference standard in-laboratory PSG. With widespread availability of the “smart” mobile phone, there is an explosion of applications to monitor sleep quality on the phone. “Apps” for OSA detection combine a screening questionnaire with actigraphy from the in-built accelerometer, and analysis of the audio-signal recorded from the smart-phone’s microphone or hands-free kit\(^8,9\). However there is little scientific evidence to support any recommendation for their routine use.

Magnetic Distance Recording

Measurement of vertical mandibular position during sleep has shown that it is more open in patients with OSA when compared with healthy adults without OSA. Also the mandibular opening increases progressively during apnoeic episodes, decreasing at the termination of apnoea\(^10,11\). Automated analysis of mandibular movement can be provided by a distance-meter based on the principles of magnetometry. Two coils and capacitors, each embedded in a small cylinder, are placed parallel to each other, perpendicular to the midline of the face. An electronic circuit converts distance into voltage, allowing for the detection of salient mandible movement, which is a surrogate for arousal. Attended full PSG with two methods combining nasal airflow and pulse oximetry recordings, with or without mandibular movement automated analysis for the detection of respiratory events has been compared\(^12\). Such measurements could also outline the impact of jaw position on upper airway collapsibility during sleep and potentially help determine ideal patients for mandibular advancement device (MAD) therapy\(^13,14\).

Entropy of Tracheal Sounds to Detect Apnoea

Entropy of the acoustic signal from a microphone placed over trachea has been shown to reliably provide an early warning of the onset of obstructive and central apnoea in volunteers under sedation with propofol and remefentanil\(^15\). In that study, respiratory flow rate and tracheal sounds were recorded using a pneumotachometer and a microphone. The logarithm of the tracheal sound Shannon entropy (Log-E) was calculated to estimate flow rate. An adaptive Log-E threshold was used to distinguish between the presence of normal breath and apnoea. Apnoea detected from tracheal sounds was compared to the apnoea detected from respiratory flow rate. The acoustic method detected obstructive and central apnoea in sedated volunteers with 95% sensitivity and 92% specificity\(^15\). Non-invasive estimation of neck fluid volume can also be made by acoustic measurements with a microphone placed at the supra-mental position. The role of accumulation of neck fluid in pathogenesis of OSA can thus be clarified\(^16\).

Acoustic reflection technique using transmitted acoustic waves in the airway

Cross sectional area of the upper airway has been measured non-invasively by acoustic reflection technique using incidental and reflected sound waves introduced through mouth or nostril. Miniaturized microphones and a driver were introduced into the airway to measure transmitted waves in a three-microphone method\(^17\). The pharyngeal cross-sectional areas including retropalatal and retroglottal regions and the site of airway closure during sleep could thus be visualised. This technology may have a potential role in future in a better understanding and designing of therapeutic interventions in OSA.

Passive infrared (PIR) technology for detection of breathing movement

Breath Motion Detection System (BMDS) is a new concept that uses Passive Infrared (PIR) technology for a contact-less detection of respiratory movements. Every object at temperature above absolute zero emits infrared radiation. When placed on body surface, emitted infrared radiation can be detected by piezo-electric sensors. By
using a differential amplifier between two such points,
it is possible to detect the difference in amount of heat
reduced and therefore the heat source motion. The PIR
device does not emit an infrared beam but merely
passively accepts incoming infrared radiation. Low
amplitude movement detection such as chest and
abdominal movement produced by respiratory effort or
air temperature changes around nose area can easily be
thus detected. The technology is safe, inexpensive and
simple. The potential clinical application needs to be
assessed and considered. Significant physiological information
relating to breathing as well as bodily motion can be
also obtained.

**Spectral Analysis of Thoraco-
Abdominal Motion and Oximetry**

It has been observed commonly that nasal oral airflow
sensors are often uncomfortable and prone to signal
artifacts. The presence of simplified systems
has been considered to identify the cyclical pattern of
OSA using spectral analysis of PSG signals. The low
frequency component of the PSG power spectrum carries
important information as the periodic nature of OSA
events. Frequency and time-frequency spectral analysis
of pulse, blood pressure and heart-rate variability
demonstrate oscillations in the low frequency range (i.e.
0.01-0.1 Hz) that correlate with the presence of OSA.
It has been reported that magnitude squared coherence
(MSC) analysis of simultaneously recorded airflow and
oximetry signals also displays OSA related oscillations
in the low frequency band of PSG spectrogram.

Low frequency oscillations in the spectral analysis of
PSG bio signals is an important diagnostic signature of
OSA and possibly can be used to design simplified tools
to detect OSA.

Non Contract Biomotion Sensor

Non-contact biomotion sensor has been developed for
identifying sleep/wake patterns in adults. It uses ultra
low-power reflected radiofrequency waves to determine
respiratory movement of a patient during sleep. It uses
the same principle as radar that is also used in aviation
and defence sectors. Recent developments in
miniaturization, semiconductor technology and
computation have been very helpful. When evaluated
against reference-standard polysomnography, the overall
per-subject accuracy was 78% with a Cohen's kappa of
0.38. The non-contact biomotion sensor is unobtrusive
and offers contact-less and easy measurement of sleep/
wake patterns in the home. Patients do not have to
remember to wear special headbands, watches etc. It may
prove to be a potentially useful home-based device for
sleep/wake assessment in circadian rhythm disorders and
evaluation of SDB. Its absolute performance has also
been compared with actigraphy.

Drug induced sleep endoscopy (DISE)

This procedure comprises pharmacologic induction of
several fiberoptic endoscopy to visualise
upper airway obstruction and/or snoring. It is also
termed as sleep nasoendoscopy, somnoendoscopy,
somnscopy, sedated endoscopy and propofol-sleep
endoscopy. It is indicated when surgery or mandibular
repositioning appliance (MRA) therapy is being
considered as a treatment option. Severe OSA (AHI >
70 events/hour) and severe obesity are relative
contraindications. The pattern of findings is reported as
per the VOTE (acronym for velum, oropharynx, tongue
base and epiglottis) classification. The VOTE
classification system has been recently proposed. It
focuses on primary structures that contribute to upper
airway obstruction, either alone or in combination. DISE
is a qualitative, and not quantitative, assessment of
vibration and obstruction event, the clinical cut-off points
being (a) none (b) partial and (c) complete. Common
sites of obstruction and vibration are located in the soft
palate, lateral pharyngeal walls, including tonsils, and base
of tongue. Epiglottic level of obstruction is less common.
Surgical procedures may exert differential effects on each
of these structures; hence distinguishing between the
structural contributions may play an important role in
selection of procedure and outcome measurement.

The older Fujita classification system included two
primary regions of pharyngeal upper airway obstruction
namely the palatal/ velo-palatine region and
hypopharyngeal/retroolingual regions.

Pulse Transit Time

Pulse transit time (PTT) is the time taken for the pulse
wave to travel from the aortic valve to the peripheral
pulse. The velocity of the pulse wave is directly
proportional to the inverse of systolic blood pressure.
Any increase in the blood pressure results in increase in
vascular tone which, in turn, stiffens the arterial wall. This causes a reduction in PTT and a transient dip in its tracing. The opening of aortic valve is marked by the R wave on ECG. Isometric contraction of the left ventricle, results in a slight delay between opening of aortic valve and R-wave. Prolongation of isometric contraction time, as caused by inspiratory effort, amplifies the PTT signal. It is essential to incorporate ECG leads for recognition of R-wave and oxymetric probes to access the arrival of the pulse wave in the peripheral pulse. Usually the point on the pulse waveform that is 50% the height of the maximum value is utilised for recognition of the R-wave. The normal value of PTT is 200 to 300 milliseconds (with an accuracy of 2 milliseconds) when using the finger probe. An increase in heart rate and blood pressure accompanies every arousal. This results in a change in PTT; thus any change in PTT indicates arousals. As PTT is inversely correlated with blood pressure, a PTT micro-arousal is defined as a transient dip in PTT from baseline. The shape of the area above the curve of PTT must be related to the time course evolution of blood pressure in order to accurately define a PPT arousal. Spontaneous variations in sympathetic activity (and therefore PTT baseline) are common during REM sleep. Therefore identification of true micro arousals during REM sleep is more difficult than during other stages. PTT can be used to analyse respiratory effort and is therefore helpful in recognition of upper airway respiratory syndrome and central events. Cardiac arrhythmias, movements of finger probe, poor oxymetric signal, peripheral arterial disease and poor ECG quality are associated with false PTT values.

Peripheral Arterial Tonometry

Peripheral vasoconstriction, caused by increased sympathetic tone, is recognized by a sensor applied to the subject’s finger. This method has been validated in a number of studies, both in isolation as well as in combination with oximetry and/or actigraphy. It has the potential to allow estimation of future cardiovascular risk in the identification of endothelial dysfunction. The surge in sympathetic activity, as measured by peripheral arterial tonometry, correlates with EEG arousals. The biggest strength of PAT-based technology is its non-invasive nature. However, it has limited use in patients who have cardiac arrhythmia or those who are on peripheral alpha-blocking agents.

Home Sleep Testing

Home sleep testing (HST) has recently gained popularity in cases of moderate and severe sleep apnoea without any comorbid disorders. However, this is a debatable topic though data is suggestive of almost equal outcomes in both home sleep testing and traditional approach.

Heart Rate Variability

Heart rate as well as amplitude of ECG vary cyclically with sleep apnoea cycles and this can be used for sleep apnoea screening. Day-night variability of ECG is also useful. A combination of heart rate variability and ECG amplitude imparts accuracy to classification of sleep apnea.

Capnography

Capnography based on infrared absorption spectroscopy is utilised to record PCO2 during sleep study (end-tidal PCO2). Transcutaneous PCO2 can be sued as an alternative. Recent introduction of novel transcutaneous combined sensor for PCO2 and arterial oxygen saturation monitoring has been clinically implemented.

PVDF Thermal Sensors

Poly-vinyledene fluoride (PVDF) film thermal sensors have a faster response time than traditional thermal devices. The signal is 1,50,000 times stronger than the signal produced by thermocouple and is more accurate. It can detect both nasal and oral flow.

Fiber Grating Vision Sensor

This is a non-contact respiratory monitoring device that can detect changes in volume by measuring movement.
of laser spots on body surface (>100 sampling points on upper half of body). It discriminates between OSA and central apnea.

Mattress Sensor Technology

Several technical advancements have been made in designing mattresses that can analyse body movements, respiration and cardiac pulses. Electromechanical film transducer sensor, air-tube with differential pressure sensors, polyvinyl tubes filled with air-free water, temperature and humidity monitors, high-resolution force sensors etc have been used for the same purpose.

Intelligent Textile Technology

Textile sensors can now be embedded in smart garments resulting in minimization of weight and size of electronics, reduction of power consumption, designing of specific algorithms for signal conditioning and minimisation of motion artefacts. Specially designed vests can integrate a textile-based piezo-resistive plethysmograph that detects changes in thoracic circumference from which respiratory frequency is derived. The same conductive fibers are processed to design the plethysmograph, connect the transducers with the electronic module, which is hooked to the vest at waist level by a Velcro stip.

Telemedicine

With reference to sleep related breathing disorders, telemedicine can improve treatment compliance, remotely download previously recorded data as well as transmit real-time physiological parameters while the patient sleeps. Telemetry based sleep monitors, consisting of a 14-channel wearable wireless monitor and a mobile phone-based gateway to transfer data, including video, in real time from patient’s home to a remote sleep centre, are now proposed.

Motion Detection

Motion detectors such as actigraphs worn on wrist have been used since 1990s. Rest periods are assumed as sleep. They have been utilised to assess dynamic respiratory movements and screen for SDB.

Automation and Computer-assisted Scoring Technology

Attempts have been made recently to partially or totally automate scoring of polysomnography data. These approaches are, however, fraught with risks and benefits. Computer aided algorithms are reproducible and help to overcome human fatigue during scoring. On the other hand, manual scoring ensures incorporation of human experience. Robust computational analysis of EEG as well as respiratory events needs further development.

Conclusions

Rapid strides have been made and are ongoing in every field of technology. There is ample reason to reaffirm faith that technological advances will redesign the practice of clinical sleep medicine. More extensive evidence is, however, required to translate these changing paradigms and innovative technologies into better and personalized patient-care algorithms.

References

22. Alvarez D, Gutierrez GC, Marcos JV, delCampos F, Hornero R. Spectral analysis of single channel airflow and oxygen saturation recordings in obstructive sleep apnea detection;

