Indian Journal of Sleep Medicine

Register      Login

VOLUME 17 , ISSUE 4 ( October-December, 2022 ) > List of Articles


Smartphones and Consumer Devices in Management of Obstructive Sleep Apnea

Kamaldeep Singh, Arpit Jain, Ishita Panchal, Hritik Madan, Salil Chaturvedi, Anastas Kostojchin, Ambreen Shahzadi, Muzammil M Khan, Shobhit Piplani

Keywords : Obstructive sleep apnea, Review, Sleep medicine, Smartphone, Telemonitoring, Wearable sleep technology

Citation Information : Singh K, Jain A, Panchal I, Madan H, Chaturvedi S, Kostojchin A, Shahzadi A, Khan MM, Piplani S. Smartphones and Consumer Devices in Management of Obstructive Sleep Apnea. Indian Sleep Med 2022; 17 (4):103-107.

DOI: 10.5005/jp-journals-10069-0108

License: CC BY-NC 4.0

Published Online: 29-04-2023

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: To review various consumer-level technologies for management and continuing case of obstructive sleep apnea (OSA) patients. Background: Recent advancements in wearable and smartphone technology have created new ways to assess sleep health, including OSA. Obstructive sleep apnea leads to continuous upper airway obstruction during sleep, producing episodes of apnea–hypopnea, sleep fragmentation, nonrestorative sleep, and excessive daytime somnolence, leading to long-term cardiopulmonary complications. This review sheds light on the use of modern smartphone-based sleep-tracking applications and consumer devices in the management of OSA. Results: Rapid advancements in mHealth technologies have enabled users to self-monitor and visualize their sleeping patterns, symptoms, and behavioral data, enabling them to take everyday precautions. Various available options include plethysmography, actigraphy, pulse-oximetry, ambulatory ECG recorders, body temperature sensors, sound analysis, and cardiorespiratory coupling. Conclusion: Due to limitations in precision and standards, such tools may not be recommended for clinical populations or as diagnostic tools. Future research should focus on analyzing the effect of these interventions on persons who already have good sleep quality or who use the applications but skip days. In addition, comprehensive studies measuring behavioral changes in various age, gender, and comorbidity groups are warranted. Clinical significance: While technological aids help in better management, it is vital to develop efficient methods for integrating wearables’ data into patient-care pathways. Restrictive IT infrastructures, privacy, data protection, and data ownership arguments prevent widespread integration of consumer wearables into clinical workflows.

PDF Share
  1. O’Mahony AM, Garvey JF, McNicholas WT. Technologic advances in the assessment and management of obstructive sleep apnoea beyond the apnoea-hypopnoea index: A narrative review. J Thorac Dis 2020;12(9):5020–5038. DOI: 10.21037/jtd-sleep-2020-003.
  2. Franklin KA, Lindberg E. Obstructive sleep apnea is a common disorder in the population – A review on the epidemiology of sleep apnea. J Thorac Dis 2015;7(8):1311–1322. DOI: 10.3978/j.issn.2072-1439.2015.06.11.
  3. Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med 2019;7(8):687–698. DOI: 10.1016/S2213-2600(19)30198-5.
  4. Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med 2017;13(3):479–504. DOI: 10.5664/jcsm.6506.
  5. Lam JCM, Mak JCW, Ip MSM. Obesity, obstructive sleep apnoea and metabolic syndrome. Respirology 2012;17(2):223–236. DOI: 10.1111/j.1440-1843.2011.02081.x.
  6. Baglioni C, Nanovska S, Regen W, et al. Sleep and mental disorders: A meta-analysis of polysomnographic research. Psychol Bull 2016;142(9):969–990. DOI: 10.1037/bul0000053.
  7. Torous J, Keshavan M. A new window into psychosis: The rise digital phenotyping, smartphone assessment, and mobile monitoring. Schizophr Res 2018;197:67–68. DOI: 10.1016/j.schres.2018.01.005.
  8. U.S. Smartphone Use in 2015. Pew Research Center. (accessed 05.09.2022).
  9. Aledavood T, Lehmann S, Saramäki J. Social network differences of chronotypes identified from mobile phone data. EPJ Data Sci 2018;7(1):46. DOI: 10.1140/epjds/s13688-018-0174-4.
  10. Baumert M, Cowie MR, Redline S, et al. Sleep characterization with smart wearable devices: A call for standardization and consensus recommendations. Sleep 2022. DOI: 10.1093/sleep/zsac183.
  11. Stein PK, Pu Y. Heart rate variability, sleep and sleep disorders. Sleep Med Rev 2012;16(1):47–66. DOI: 10.1016/j.smrv.2011.02.005.
  12. Altini M, Kinnunen H. The promise of sleep: A multi-sensor approach for accurate sleep stage detection using the oura ring. Sensors (Basel) 2021;21(13):4302. DOI: 10.3390/s21134302.
  13. Zhang L, Wu H, Zhang X, et al. Sleep heart rate variability assists the automatic prediction of long-term cardiovascular outcomes. Sleep Med 2020;67:217–224. DOI: 10.1016/j.sleep.2019.11.1259.
  14. Moreno-Pino F, Porras-Segovia A, López-Esteban P, et al. Validation of fitbit charge 2 and fitbit alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea. J Clin Sleep Med 2019;15(11):1645–1653. DOI: 10.5664/jcsm.8032.
  15. Ibáñez V, Silva J, Cauli O. A survey on sleep assessment methods. PeerJ 2018;6:e4849. DOI: 10.7717/peerj.4849.
  16. Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med 2018;15(5):429–448. DOI: 10.2217/pme-2018-0044.
  17. Patel P, Kim JY, Brooks LJ. Accuracy of a smartphone application in estimating sleep in children. Sleep Breath 2017;21(2):505–511. DOI: 10.1007/s11325-016-1425-x.
  18. Tseng MH, Hsu HC, Chang CC, et al. Development of an intelligent app for obstructive sleep apnea prediction on android Smartphone using data mining approach. In: Proceedings of the IEEE 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing; 2012. pp. 774–779. DOI: 10.1109/UIC-ATC.2012.89.
  19. Zhang J, Zhang Q, Wang Y, et al. A real-time auto-adjustable smart pillow system for sleep apnea detection and treatment. In: Proceedings of the 12th International Conference on Information Processing in Sensor Networks–IPSN ’13, ACM Press; 2013. p. 179. DOI: 10.1145/2461381.2461405.
  20. Lin CT, Prasad M, Chung CH, et al. IoT-based wireless polysomno-graphy intelligent system for sleep monitoring. IEEE Access 2018;6:405–414. DOI: 10.1109/ACCESS.2017.2765702.
  21. Chang EY, Wu MH, Tang KFT, et al. Artificial Intelligence in XPRIZE DeepQ Tricorder. In: Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care. ACM; 2017. pp. 11–18. DOI: 10.1145/3132635.3132637.
  22. Khosla S, Deak MC, Gault D, et al. Consumer sleep technology: An American Academy of Sleep Medicine Position Statement. J Clin Sleep Med 2018;14(05):877–880. DOI: 10.5664/jcsm.7128.
  23. Gruwez A, Bruyneel AV, Bruyneel M. The validity of two commercially-available sleep trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients. PLoS One 2019;14(1):e0210569. DOI: 10.1371/journal.pone.0210569.
  24. Mantua J, Gravel N, Spencer RMC. Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors (Basel) 2016;16(5):646. DOI: 10.3390/s16050646.
  25. Kang SG, Kang JM, Ko KP, et al. Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers. J Psychosom Res 2017;97:38–44. DOI: 10.1016/j.jpsychores.2017.03.009.
  26. Choi YK, Demiris G, Lin SY, et al. Smartphone applications to support sleep self-management: Review and evaluation. J Clin Sleep Med 2018;14(10):1783–1790. DOI: 10.5664/jcsm.7396.
  27. St-Onge MP, Grandner MA, Brown D, et al. Sleep duration and quality: Impact on lifestyle behaviors and cardiometabolic health: A scientific statement from the American Heart Association. Circulation 2016;134(18):e367–e386. DOI: 10.1161/CIR.0000000000000444.
  28. Lu C, Hu Y, Xie J, et al. The use of mobile health applications to improve patient experience: Cross-sectional study in Chinese public hospitals. JMIR Mhealth Uhealth 2018;6(5):e126. DOI: 10.2196/mhealth.9145.
  29. Li H, Zhang T, Chi H, et al. Mobile health in China: Current status and future development. Asian J Psychiatry 2014;10:101–104. DOI: 10.1016/j.ajp.2014.06.003.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.