Indian Journal of Sleep Medicine

Register      Login

VOLUME 16 , ISSUE 3 ( July-September, 2021 ) > List of Articles


COVID-19 and Obstructive Sleep Apnea

Arup K Halder

Keywords : COVID-19, Endothelial dysfunction, Happy hypoxia, OSA, Oxidative stress, RAAS

Citation Information : Halder AK. COVID-19 and Obstructive Sleep Apnea. Indian Sleep Med 2021; 16 (3):86-89.

DOI: 10.5005/jp-journals-10069-0080

License: CC BY-NC 4.0

Published Online: 13-10-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Obstructive sleep apnea (OSA) is a disease that manifests with snoring, excessive daytime sleepiness, and fatigue. OSA is the mother of many diseases. COVID-19 is such a disease that can cause greater harm to the patients with OSA. The prevalence of clinically significant OSA where an urgent intervention was required was 6–17% in the adult population, whereas the prevalence was as high as 49% in the advanced age-group. The prevalence of OSA is always more in adult men than in adult women. Expressions of COVID-19 among different peoples are varied. But four main determinants are the following: (1) renin–angiotensin–aldosterone system (RAAS), (2) oxidative stress of the individual, (3) endothelial dysfunction, and (4) immune responses. All of these four systems are in deranged state in OSA patients; they are already in the hyperactive states due to intermittent hypoxia, sympathetic activation, and poor sleep quality. So any acute insult like COVID-19 may throw these systems out of control. The acute “happy hypoxia” of COVID-19 can really be dangerous in the presence of “chronic intermittent happy hypoxia” of OSA.

  1. Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 2017;34:70–81. DOI: 10.1016/j.smrv.2016.07.002.
  2. Reddy EV, Kadhiravan T, Mishra HK, et al. Prevalence and risk factors of obstructive sleep apnea among middle-aged urban Indians: a community-based study. Sleep Med 2009;10(8):913–918. DOI: 10.1016/j.sleep.2008.08.011.
  3. Tufik S, Santos-Silva R, Taddei JA, et al. Obstructive sleep apnea syndrome in the Sao Paulo epidemiologic sleep study. Sleep Med 2010;11(5):441–446. DOI: 10.1016/j.sleep.2009.10.005.
  4. Heinzer R, Vat S, Marques-Vidal P, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 2015;3(4):310–318. DOI: 10.1016/S2213-2600(15)00043-0.
  5. Lee SD, Kang SH, Ju G, et al. The prevalence of and risk factors for sleep-disordered breathing in an elderly Korean population. Respiration 2014;87(5):372–378. DOI: 10.1159/000358442.
  6. Ekiz T, İnönü Köseoğlu H, Pazarlı AC. Obstructive sleep apnea, renin-angiotensin system, and COVID-19: possible interactions. J Clin Sleep Med 2020;16(8):1403–1404. DOI: 10.5664/jcsm.8576.
  7. Fraga-Silva RA, Sorg BS, Wankhede M, et al. ACE2 activation promotes antithrombotic activity. Mol Med 2010;16(5–6):210–215. DOI: 10.2119/molmed.2009.00160.
  8. Jin ZN, Wei YX. Meta-analysis of effects of obstructive sleep apnea on the renin-angiotensin-aldosterone system. J Geriatr Cardiol 2016;13(4):333–343. DOI: 10.11909/j.issn.1671-5411.2016.03.020.
  9. Barceló A, Elorza MA, Barbé F, et al. Angiotensin converting enzyme in patients with sleep apnoea syndrome: plasma activity and gene polymorphisms. Eur Respir J 2001;17(4):728–732. DOI: 10.1183/09031936.01.17407280.
  10. McSharry D, Malhotra A. Potential influences of obstructive sleep apnea and obesity on COVID-19 severity. J Clin Sleep Med 2020;16(9):1645. DOI: 10.5664/jcsm.8538.
  11. Vaduganathan M, Vardeny O, Michel T, et al. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020;382(17):1653–1659. DOI: 10.1056/NEJMsr2005760.
  12. Bauters F, Rietzschel ER, Hertegonne KB, et al. The link between obstructive sleep apnea and cardiovascular disease. Curr Atheroscler Rep 2016;18(1):1. DOI: 10.1007/s11883-015-0556-z.
  13. Vicente E, Marin JM, Carrizo SJ, et al. Upper airway and systemic inflammation in obstructive sleep apnoea. Eur Respir J 2016;48(4):1108–1117. DOI: 10.1183/13993003.00234-2016.
  14. DeMartino T, Ghoul RE, Wang L, et al. Oxidative stress and inflammation differentially elevated in objective versus habitual subjective reduced sleep duration in obstructive sleep apnea. Sleep 2016;39(7):1361–1369. DOI: 10.5665/sleep.5964.
  15. Delgado-Rochea L, Mestab F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res 2020;51(5):384–387. DOI: 10.1016/j.arcmed.2020.04.019.
  16. Budhiraja R, Parthasarathy S, Quan SF. Endothelial dysfunction in obstructive sleep apnea. J Clin Sleep Med 2007;3(4):409.
  17. Ip MS, Tse HF, Lam B, et al. Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med 2004; 169(3):348–353. DOI: 10.1164/rccm.200306-767OC.
  18. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation 2004;109(2):159–165. DOI: 10.1161/01.CIR.0000102381.57477.50.
  19. Memtsoudis S, Liu SS, Ma Y, et al. Perioperative pulmonary outcomes in patients with sleep apnea after noncardiac surgery. Anesth Analg 2011;112(1):113–121. DOI: 10.1213/ANE.0b013e3182009abf.
  20. Ibarra-Coronado EG, Pantaleón-Martínez AM, Velazquéz-Moctezuma J. The bidirectional relationship between sleep and immunity against infections. J Immunol Res 2015;2015. Article ID 678164, 14 p. DOI: 10.1155/2015/678164.
  21. Dimitrov S, Lange T, Nohroudi K, et al. Number and function of circulating human antigen presenting cells regulated by sleep. Sleep 2007;30(4):401–411. DOI: 10.1093/sleep/30.4.401.
  22. Kheirandish-Gozal L, Gozal D. Obstructive sleep apnea and inflammation: proof of concept based on two illustrative cytokines. Int J Mol Sci 2019;20(3):459. DOI: 10.3390/ijms20030459.
  23. De Araújo Freitas IG, de Bruin PF, Bittencourt L, et al. What can blood biomarkers tell us about cardiovascular risk in obstructive sleep apnea? Sleep Breath 2015;19(3):755–768. DOI: 10.1007/s11325-015-1143-9.
  24. Churchill L, Rector DM, Yasuda K, et al. Tumor necrosis factor alpha: activity dependent expression and promotion of cortical column sleep in rats. Neuroscience 2008;156(1):71–80. DOI: 10.1016/j.neuroscience.2008.06.066.
  25. Krueger JM, Opp MR. Sleep and microbes. Int Rev Neurobiol 2016;131:207–225. DOI: 10.1016/bs.irn.2016.07.003.
  26. Gozal D, Kheirandish-Gozal L. Obesity and excessive daytime sleepiness in prepubertal children with obstructive sleep apnea. Pediatrics 2009;123(1):13–18. DOI: 10.1542/peds.2008-0228.
  27. Li Y, Vgontzas AN, Fernandez-Mendoza J, et al. Objective, but not subjective, sleepiness is associated with inflammation in sleep apnea. Sleep 2017;40(2):zsw033. DOI: 10.1093/sleep/zsw033.
  28. Van Eyck A, Van Hoorenbeeck K, De Winter BY, et al. Sleep-disordered breathing, systemic adipokine secretion, and metabolic dysregulation in overweight and obese children and adolescents. Sleep Med 2017;30:52–56. DOI: 10.1016/j.sleep.2015.11.014.
  29. Bhattacharjee R, Kim J, Kheirandish-Gozal L, et al. Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol 2011;46(4):313–323. DOI: 10.1002/ppul.21370.
  30. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020;323(20):2052–2059. DOI: 10.1001/jama.2020.6775.
  31. Feuth T, Saaresranta T, Karlsson A, et al. Is sleep apnoea a risk factor for Covid-19? Findings from a retrospective cohort study. medRxiv. DOI: 10.1101/2020.05.14.20098319.
  32. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region – case series. N Engl J Med 2020;382(21):2012–2022. DOI: 10.1056/NEJMoa2004500.
  33. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020;323(16):1612–1614. DOI: 10.1001/jama.2020.4326.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.