Indian Journal of Sleep Medicine

Register      Login

VOLUME 14 , ISSUE 2 ( April-June, 2019 ) > List of Articles


Neurocognitive Decline in Obstructive Sleep Apnea: An Ignored Entity

Manas Mengar, Amit Murar

Keywords : Continuous positive airway pressure, Neurocognitive, Obstructive sleep apnea

Citation Information : Mengar M, Murar A. Neurocognitive Decline in Obstructive Sleep Apnea: An Ignored Entity. Indian Sleep Med 2019; 14 (2):38-41.

DOI: 10.5005/jp-journals-10069-0038

License: CC BY-NC 4.0

Published Online: 01-12-2018

Copyright Statement:  Copyright © 2019; The Author(s).


Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder causing cognitive dysfunction. Unfortunately, both the disease itself and this disastrous complication go unnoticed due to poor perception for the same. This review attempts to explain the pathophysiology, consequences, and treatment options for the same. The keypoint is early diagnosis and treatment of OSA so as to prevent the cognitive decline.

  1. Edwards BA, Eckert DJ, et al. Obstructive sleep apnoea pathogenesis from mild to severe: is it all the same? Respirology 2016;22:33–42. DOI: 10.1111/resp.12913.
  2. Udwadia ZF, Doshi AV, et al. Prevalence of Sleep-disordered Breathing and Sleep Apnea in Middle-aged Urban Indian Men. Am J Respir Crit Care Med 2004;169(2):168–173. DOI: 10.1164/rccm.200302-265OC.
  3. Peppard PE, Young T, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 2013;117:1006–10014. DOI: 10.1093/aje/kws342.
  4. Reddy EV, Kadhivaran T, et al. Prevalence and risk factors of obstructive sleep apnoea among middle-aged urban Indians: a community based study. Sleep Med 2009;10:913–918. DOI: 10.1016/j.sleep.2008.08.011.
  5. Peppard PE, Young T, et al. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000;342:1378–1384. DOI: 10.1056/NEJM200005113421901.
  6. Shahar E, Whitney CW, et al. Sleep disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001;152:717–720. DOI: 10.1164/ajrccm.163.1.2001008.
  7. Arzt M, Young T, et al. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med 2005;172:1447–1451. DOI: 10.1164/rccm.200505-702OC.
  8. Gildeh N, Drakatos P, et al. Emerging co-morbidities of obstructive sleep apnea: cognition, kidney disease, and cancer. J Thorac Dis 2016;8:E901–E917. DOI: 10.21037/jtd.2016.09.23.
  9. Young T, Peppard PE, et al. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 2002;165:1217–1239. DOI: 10.1164/rccm.2109080.
  10. George CF. Sleep apnea, alertness, and motor vehicle crashes. Am J Respir Crit Care Med 2007;176:954–956. DOI: 10.1164/rccm.200605-629PP.
  11. Daulatzai MA. Evidence of neurodegeneration in obstructive sleep apnea: relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J Neurosci Res 2015;93:1778–1794. DOI: 10.1002/jnr.23634.
  12. Young T, Palta M, et al. Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ 2009;108(5):246–249.
  13. Jackson ML, Howard ME, et al. Cognition and daytime functioning in sleep-related breathing disorders. Prog Brain Res 2011;190:53–68. DOI: 10.1016/B978-0-444-53817-8.00003-7.
  14. Strauss E, Spreen O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed., Oxford University Press; 2006.
  15. Bucks RS, Olaithe M, et al. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology 2013;18:61–70. DOI: 10.1111/j.1440-1843.2012.02255.x.
  16. Grigg-Damberger M, Ralls F. Cognitive dysfunction and obstructive sleep apnea: from cradle to tomb. Curr Opin Pulm Med 2012;18(6):580–587. DOI: 10.1097/MCP.0b013e328358be18.
  17. Gagnon K, Baril AA, et al. Cognitive impairment in obstructive sleep apnea. Pathol Biol (Paris) 2014;62(5):233–240. DOI: 10.1016/j.patbio.2014.05.015.
  18. Karimi M, Hedner J, et al. Attention deficits detected in cognitive tests differentiate between sleep apnea patients with or without a motor vehicle accident. Sleep Med 2015;16(4):528–533. DOI: 10.1016/j.sleep.2014.11.015.
  19. Gosselin N, Mathieu A, et al. Deficits in involuntary attention switching in obstructive sleep apnea syndrome. Neuroscience Letters 2006;408(1):73–78. DOI: 10.1016/j.neulet.2006.08.046.
  20. Aloia MS, Arnedt JT, et al. Neuropsychological sequelae of obstructive sleep apnea-hypopnea syndrome: a critical review. J Int Neuropsychol Soc 2004;10(5):772–778. DOI: 10.1017/S1355617704105134.
  21. Kloepfer C, Riemann D, et al. Memory before and after sleep in patients with moderate obstructive sleep apnea. J Clin Sleep Med 2009;5(6):540–548.
  22. Twigg GL, Papaioannou I, et al. Obstructive sleep apnea syndrome is associated with deficits in verbal but not visual memory. Am J Respir Crit Care Med 2010;182(1):98–103. DOI: 10.1164/rccm.200901-0065OC.
  23. Saunamäki T, Jehkonen M, et al. Visual dysfunction and computational sleep depth changes in obstructive sleep apnea syndrome. Clinical EEG and Neuroscience 2009;40(3):162–167. DOI: 10.1177/155005940904000308.
  24. Wallace A, Bucks RS. Memory and obstructive sleep apnea: a meta-analysis. Sleep 2013;36(2):203–220. DOI: 10.5665/sleep.2374.
  25. Olaithe M, Bucks RS. Executive dysfunction in OSA before and after treatment: a meta-analysis. Sleep 2013;36(9):1297–1305. DOI: 10.5665/sleep.2950.
  26. Engleman HM, Kingshott RN, et al. Cognitive function in the sleep apnea/hypopnea syndrome (SAHS). Sleep 2000;23(Suppl 4):S102–S108.
  27. Verstraeten E. Neurocognitive effects of obstructive sleep apnea syndrome. Curr Neurol Neurosci Rep 2007;7:161–166. DOI: 10.1007/s11910-007-0012-8.
  28. Ayalon L, Ancoli-Israel S, et al. Relationship between obstructive sleep apnea severity and brain activation during a sustained attention task. Sleep 2009;32(3):373–381. DOI: 10.1093/sleep/32.3.373.
  29. Naismith S, Winter V, et al. Neurobehavioral functioning in obstructive sleep apnea: differential effects of sleep quality, hypoxemia and subjective sleepiness. J Clin Exp Neuropsychol 2004;26(1):43–54. DOI: 10.1076/jcen.
  30. Naegele B, Thouvard V, et al. Deficits of cognitive executive functions in patients with sleep apnea syndrome. Sleep 1995;18:43–52.
  31. Patil SP, Schneider H, et al. Adult obstructive sleep apnea: pathophysiology and diagnosis. Chest 2007;132:325–337. DOI: 10.1378/chest.07-0040.
  32. Quan SF, Chan CS, et al. The association between obstructive sleep apnea and neurocognitive performance–the Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep 2011;34:303–314B. DOI: 10.1093/sleep/34.3.303.
  33. Bedard MA, Montplaisir J, et al. Obstructive sleep apnea syndrome: pathogenesis of neuropsychological deficits. J Clin Exp Neuropsychol 1991;13:950–964. DOI: 10.1080/01688639108405110.
  34. Beebe DW, Gozal D. Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J Sleep Res 2002;11:1–16. DOI: 10.1046/j.1365-2869.2002.00289.x.
  35. Tartar JL, McKenna JT, et al. Sleep fragmentation reduces hippocampal CA1 pyramidal cell excitability and response to adenosine. Neurosci Lett 2010;469:1–5. DOI: 10.1016/j.neulet.2009.11.032.
  36. Gall R, Isaac L, et al. Quality of life in mild obstructive sleep apnea. Sleep 1993;16(8 Suppl):S59–S61. DOI: 10.1093/sleep/16.suppl_8.S59.
  37. Ohayon MM, Priest RG, et al. The place of confusional arousals in sleep and mental disorders: findings in a general population sample of 13,057 subjects. J Nerv Ment Dis 2000;188(6):340–348. DOI: 10.1097/00005053-200006000-00004.
  38. Ayalon L, Ancoli-Israel S, et al. Relationship between obstructive sleep apnea severity and brain activation during a sustained attention task. Sleep 2009;32:373–381. DOI: 10.1093/sleep/32.3.373.
  39. Thomas RJ, Rosen BR, et al. Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol (1985) 2005;98:2226–2234. DOI: 10.1152/japplphysiol.01225.2004.
  40. Kamba M, Inoue Y, et al. Cerebral metabolic impairment in patients with obstructive sleep apnoea: an independent association of obstructive sleep apnoea with white matter change. J Neurol Neurosurg Psychiatry 2001;71:334–349. DOI: 10.1136/jnnp.71.3.334.
  41. Canessa N, Castronovo V, et al. Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment. Am J Respir Crit Care Med 2011;183:1419–1426. DOI: 10.1164/rccm.201005-0693OC.
  42. Yaouhi K, Bertran F, et al. A combined neuropsychological and brain imaging study of obstructive sleep apnea. J Sleep Res 2009;18:36–48. DOI: 10.1111/j.1365-2869.2008.00705.x.
  43. Weaver TE, Mancini C, et al. Continuous positive airway pressure treatment of sleepy patients with milder obstructive sleep apnea: results of the CPAP Apnea Trial North American Program (CATNAP) randomized clinical trial. Am J Respir Crit Care Med 2012;186:677–683. DOI: 10.1164/rccm.201202-0200OC.
  44. Craig SE, Kohler M, et al. Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial. Thorax 2012;67:1090–1096. DOI: 10.1136/thoraxjnl-2012-202178.
  45. Lau EY, Eskes GA, et al. The role of daytime sleepiness in psychosocial outcomes after treatment for obstructive sleep apnea. Sleep Disord 2013;2013:140725. DOI: 10.1155/2013/140725.
  46. Marshall NS, Barnes M, et al. Continuous positive airway pressure reduces daytime sleepiness in mild to moderate obstructive sleep apnoea: a meta-analysis. Thorax 2006;61:430–434. DOI: 10.1136/thx.2005.050583.
  47. Patel SR, White DP, et al. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch Intern Med 2003;163:565–571. DOI: 10.1001/archinte.163.5.565.
  48. Castronovo V, Canessa N, et al. Brain activation changes before and after PAP treatment in obstructive sleep apnea. Sleep 2009;32:1161–1172. DOI: 10.1093/sleep/32.9.1161.
  49. Lim W, Bardwell WA, et al. Neuropsychological effects of 2-week continuous positive airway pressure treatment and supplemental oxygen in patients with obstructive sleep apnea: a randomized placebo-controlled study. J Clin Sleep Med 2007;3:380–386.
  50. Antic NA, Catcheside P, et al. The effect of CPAP in normalizing daytime sleepiness, quality of life, and neurocognitive function in patients with moderate to severe OSA. Sleep 2011;34:111–119. DOI: 10.1093/sleep/34.1.111.
  51. Kushida CA, Nichols DA, et al. Effects of Continuous Positive Airway Pressure on Neurocognitive Function in Obstructive Sleep Apnea Patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep 2012;35:1593–1602. DOI: 10.5665/sleep.2226.
  52. Naegele B, Pepin JL, et al. Cognitive executive dysfunction in patients with obstructive sleep apnea syndrome (OSAS) after CPAP treatment. Sleep 1998;21:392–397. DOI: 10.1093/sleep/21.4.392.
  53. Felver-Gant JC, Bruce AS, et al. Working memory in obstructive sleep apnea: construct validity and treatment effects. J Clin Sleep Med 2007;3:589–594.
  54. Barbe F, Mayoralas LR, et al. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial. Ann Intern Med 2001;134:1015–1023. DOI: 10.7326/0003-4819-134-11-200106050-00007.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.